Minggu, 19 Desember 2010

METABOLISME PURIN DAN PIRIMIDIN


ASAM NUKLEAT

  • Asam nukleat atau asam inti, dikatakan demikian karena asam tersebut pertama kali diketemukan didalam inti sel
  • Didalam inti sel asam nukleat ada dalam bentuk: DNA dan RNA
  • DNA (Deoksiribo Nukleic Acid) merupakan bahan genetik yang disebut Gen
  • RNA (Ribo Nukleic Acid) merupakan bahan cetakan (template) informasi genetic

NUKLEOPROTEIN

  • Nukleoprotein → asam nukleat + protein
  • Asam nukleat → gabungan nukleotida
  • Nukleotida → nukleosida + asam fosfat
  • Nukleosida → basa purin/pirimidin + pentosa
  • Hidrolisis nukleoprotein → protein, asam fosfat, pentosa, basa purin atau basa pirimidin

MACAM ASAM NUKLEAT

Macam asam nukleat:
  1. DNA (deoksiribonucleic acid)
  2. RNA (ribonucleic acid)

DNA:
  • Pentosa: deoksiribosa
  • Basa: adenin, guanin, sitosin, timin

RNA:
  • Pentosa: ribosa
  • Basa: adenin, guanin, sitosin, urasil

PURIN DAN PIRIMIDIN

  • Inti Purin dan Pirimidin adalah inti dari senyawa komponen molekul nukleotida asam nukleat RNA dan DNA
  • Derivat Purin berupa senyawa: Adenin dan Guanin
  • Derivat Pirimidin berupa senyawa: sitosin, urasil dan timin

  • Basa Purin (adenin, guanin)
  • Basa Pirimidin (sitosin, urasil, timin)
  • Nukleosida diberi nama sesuai nama basa pembentuknya: adenin nukleisida (adenosin), guanin nukleisida (guanosin), urasil nukleosida (uridin), timin nukleisida (timidin), sitosin nukleisida (sitidin)

NUKLEOSIDA ALAM

  • Adenin nukleotida /Adenosin Mono fosfat (AMP)
  • Guanin nukleotida /Guanosin Mono fosfat (GMP)
  • Hipoksantin nukleotida/Inosin Mono fosfat (IMP)
  • Urasil nukleotida/Uridin Mono fosfat (UMP)
  • Sitidin nukleotida/Sitidin Mono fosfat (SMP)
  • Timin nukleotida/Timidin Mono fosfat (TMP)

  • Adenosin Trifosfat (ATP) → ikatan energi tinggi
  • Uridin Trifosfat (UTP) → ikatan energi tinggi

BEDA DNA DAN RNA



MACAM RNA

  • mRNA (messenger RNA): membawa kode genetik dari inti ke ribosom (sebagai tempat sintesa protein), kode terdiri 3 nukleotida yang disebut Kodon
  • tRNA (transfer RNA): membawa bahan sintesa protein dari sitoplasma ke ribosom, sesuai kode yang dibawa mRNA, kode dalam rRNA disebut: Antikodon
  • rRNA (ribosomal RNA): tempat sintesa protein

PURIN DAN PIRIMIDIN

  • Purin dan pirimidin merupakan komponen utama DNA, RNA, koenzim, (NAD, NADP, ATP, UDPG)
  • Contoh Purin: (adenin, guanin, hipoxantin, xantin) → dimetabolisme jadi asam urat
  • Contoh Pirimidin: (sitosin, urasil, timin) → dimetabolisme jadi CO2 dan NH3

KATABOLISME ASAM NUKLEAT

  • Nukleoprotein dalam pencernakan akan dipecah jadi molekul yang lebih kecil → Nukleoprotein → asam nukleat + protein
  • Asam nukleat → Nukleotida → Nukleosida + asam fosfat
  • Nukleosida → basa purin/pirimidin + pentosa
  • Hidrolisis nukleoprotein → protein, asam fosfat, pentosa, basa purin atau basa pirimidin

KATABOLISME PURIN

  • Adenosin → Inosin → Hiposantin → Santin → Asam Urat
  • Guanosin → Guanin → Santin → Asam Urat
  • Santin oksidase adalah enzim yang merubah santin → asam urat, enzim tsb banyak terdapat di: hati, ginjal, usus halus
  • Penyakit Gout (pirai) ditandai oleh tingginya asam urat dalam tubuh, sehingga terjadi penimbunan dibawah kulit berbentuk tophi

KATABOLISME PIRIMIDIN

  • Sitosin → Urasil → Dihidrourasil → Asam β ureidopropionat → CO2 + NH3
  • Timin → Dihidrotimin → Asam β ureidoisobutirat → CO2 + NH3
  • Katabolisme pirimidin terutama berlangsung di hati

ASAM URAT

  • Asam urat dibentuk dari metabolisme purin
  • Asam urat diekskresi melalui ginjal
  • Jika produksi purin meningkat atau ekskresi menurun → penumpukan asam urat dalam darah → penyakit Gout

PENYAKIT GOUT

  • Gout adalah penyakit artritis berulang pada sendi articulatio matatarso falangealis akibat peningkatan kadar asam urat
  • Peningkatan asam urat disebabkan:
  • Produksi meningkat (leukemia, pneumonia)
  • Ekskresi menurun (gangguan ginjal)
  • Terapi:
  • Mengurangi produksi (kolkisin, alopurinol)

  • Gout adalah penyakit di mana terjadi penumpukan asam urat dalam tubuh secara berlebihan, baik akibat produksi yang meningkat, atau pembuangan melalui ginjal yang menurun, atau akibat peningkatan asupan makanan kaya purin.
  • Gout terjadi ketika cairan tubuh sangat jenuh akan asam urat karena kadarnya yang tinggi.

  • Gout ditandai dengan:
  • Serangan berulang dari arthritis (peradangan sendi) yang akut
  • Kkadang-kadang disertai pembentukan kristal natrium urat besar yang dinamakan tophus
  • Deformitas (kerusakan) sendi secara kronis, dan
  • Cedera pada ginjal.
  • Hiperuricemia (kadar asam urat dalam darah lebih dari 7,5 mg/dL)

PENGOBATAN GOUT

  • Ketika terjadi serangan arthritis akut, penderita diberikan terapi untuk mengurangi peradangannya.
  • Hal ini dapat dilakukan dengan memberikan obat analgesik/NSAID, kortikosteroid, tirah baring, atau dengan pemberian kolkisin.

  • Setelah serangan akut berakhir, terapi ditujukan untuk menurunkan kadar asam urat dalam tubuh.
  • Hal ini dapat dilakukan dengan memberikan kolkisin atau obat yang memacu pembuangan asam urat lewat ginjal (misal probenesid) atau obat yang menghambat pembentukan asam urat (misal allopurinol).

PENCEGAHAN GOUT

  • Pasien gout juga harus menghindari penggunaan obat yang dapat menaikkan kadar asam urat dalam darah.
  • Contoh dari obat tersebut adalah diuretik, aspirin, dan niasin.
  • Alkohol merupakan sumber purin dan juga dapat menghambat pembuangan purin melalui ginjal sehingga disarankan tidak sering mengonsumsi alkohol.

  • Pasien juga disarankan untuk meminum cairan dalam jumlah banyak karena jumlah air kemih sebanyak 2 liter atau lebih setiap harinya akan membantu pembuangan urat dan meminimalkan pengendapan urat dalam saluran kemih

  • Ada beberapa jenis makanan yang diketahui kaya purin, antara lain daging, baik daging sapi, babi, kambing, jerohan, bebek, angsa, merpati, ayam, sapi atau makanan dari laut (seafood), kacang-kacangan, bayam, jamur, dan kembang kol.

REFERENSI

  1. Harper, Rodwell, Mayes, 1977, Review of Physiological Chemistry
  2. Colby, 1992, Ringkasan Biokimia Harper, Alih Bahasa: Adji Dharma, Jakarta, EGC
  3. Wirahadikusumah, 1985, Metabolisme Energi, Karbohidrat dan Lipid, Bandung, ITB
  4. Harjasasmita, 1996, Ikhtisar Biokimia Dasar B, Jakarta, FKUI
  5. Toha, 2001, Biokimia, Metabolisme Biomolekul, Bandung, Alfabeta
  6. Poedjiadi, Supriyanti, 2007, Dasr-Dasar Biokimia, Bandung, UI Press

Minggu, 12 Desember 2010

enzim biokimia

Enzim berasal dari kata EN-ZYME yang berarti dalam ragi. Dihubungkan dengan aktivitas enzim dalam ragi, misalnya pada pembuatan tape ketan atau ketela dengan menggunakan ragi roti. Enzim merupakan suatu biokatalis, artinya suatu katalisator yang disintesis oleh organisme hidup. Secara structural enzim adalah protein, sehingga sifat-sifat protein dimiliki oleh enzim, seperti termolabil, rusak oleh logam berat (Ag,Pb,Hg), terganggu oleh perubahan pH.
Aktivitas enzim umumnya bersifat spesifik. Nomenklatur yang mula-mula digunakan sangat sederhana, yaitu dengan mencantumkan akhiran ase pada nama substrat di mana enzim itu bekerja. Misalnya proteinase : yaitu enzim yang bekerja pada protein, lipase : enzim yang bekerja pada lipid, dsb. Ada pula yang mencantumkan akhiran ase pada jenis reaksinya, missal oksidase yaitu enzim yang bereaksi secara oksidasi, reduktase yaitu enzim yang bereaksi secara reduksi. Namun kesemuanya masih memberikan kesimpangsiuran atau kurangtepatnya nomenklatur enzim; sehingga IUB (International Union of Biochemistry) menganut satu aturan kode dengan cara membagi enzim kedalam enam kelas, yaitu :
1. Oksidoreduktase :
Enzim yang mengkatalisis reaksi oksidasi-reduksi antara dua substrat
Ex : katalase (1.11.1.6 Enzim yang bekerja pada H2O2 : disebut H2O2 Oksidoreduktase)
1.1 bekerja pd gugus C-OH
1.4 bekerja pd gugus CH-NH2
1.9 bekerja pd gugus Hem
1.11 bekerja pd gugus H2O2
2. Transferase :
Mengkatalisis pemindahan gugus (selain H) antara sepasang substrat.
Ex : heksokinase (2.7.1.1 Pemindah gugus yang mengandung fosfat, misal ATP : D-heksosa-6 fosfo tranferase)
2.3 pemindah gugus asil trnsfr\
2.7 pemindah gugus fosfat
3. Hidrolase :
Mengkatalisis hidrolisis ikatan ester, eter, peptida, glikosil, anhidrida asam, c-c, c-halida, P-N.
Ex : pseudokolin esterase (3.1.1.8 asilkolin asilhidrolase)
4. Liase :
Mengkatalisis pemindahan gugus dari substrat, meninggalkan ikatan rangkap.
Ex : fumarase (4.2.1.2 L-malat-hidro-liase)
L-malat = fumarat + H2O
5. Isomerase :
Ex : triosafosfat isomerase
5.3.1.1 D-gliseraldehida-3 fosfat keto isomerase
6. Ligase :
Mengkatalisis penggabungan 2 senyawa diikuti oleh pemecahan ikatan piropospat dalam ATP atau senyawa yang sejenis.
Ex : glutamin sintase
6.3.1.2 L-glutamat : amonia ligase (ADP)
ATP – L-glutamat + NH43+ = ADP + ortofosfat — L glutamin
Keterangan :
• Digit I menunjukkan kelas; Digit II menunjukkan sub kelas; Digit III menunjukkan sub sub kelas; Digit terakhir menunjukkan nama Enzim.
KOFAKTOR
Sejumlah besar enzim membutuhkan suatu komponen lain untuk dapat berfungsi sebagai katalis. Komponen ini secara umum disebut kofaktor. Kofaktor dapat dibagi lagi dalam tiga kelompok, yaitu :
a. gugus prostetik
b. koenzim
c. activator (ion-ion logam yang dapat atau mudah terlepas dari enzim)
a. GUGUS PROSTETIK
Adalah kelompok kofaktor yang terikat pada enzim, dan tidak mudah lepas dari enzimnya, Contoh : Flavin Adenin Dinukleotida (FAD) adalah gugus prostetik dari enzim suksinat dehidrogenase
b.KOENZIM
1. Merupakan senyawa organik dengan berat molekul kecil; non protein
2. Stabil terhadap panas
3. Banyak diperlukan untuk aktivitas Enzim kecuali Enzim pencernaan (reaksi hidrolitik)
4. Terikat pada Enzim ada yang secara kovalen (prostetik) kebanyakan non kovalen
5. Dianggap sebagai substrat ke-2 :
Contoh : NAD,NADP,ATP,tiamin pirofosfat
- Pada reaksi Oksidasi – reduksi
Laktat + NAD+ —– piruvat + NADH+ + H+
(ko-substrat)
- berfungsi sebagai reagen pemindah gugus
Ex : D-G + A = A-G + D
Gugus fungsional G dipindah dari molekul D-G, ke molekul penerima A; melibatkan koEnzim;
D-G Co-E A-G
D Co-E-G A
Ex : transaminasi
Klasifikasi koenzim
1. Pemindah gugus H
NAD+ , NADP+, FMN, FAD As. Lipoat, co-Enzim Q
—- kebanyakan derivat vit. B dan adenosin monopospat.
2. Pemindah gugus selain H
 Gula phosphat
 CoA.SH
 KoEnzim folat
 KoEnzim kobomida (vit. B12)
 As. Lipoat
 Thiamin piropospat
 Piridoksal pospat
 Biotin
c. AKTIVATOR
Adalah ion-ion logam yang dapat terikat atau mudah terlepas dari enzim. Contoh K+, Mg++,Mn++, Cu++ atau Zn++
ISOZIM
 Enzim dengan sifat-sifat kimia dan fisika yang berbeda tetapi mempunyai aktivitas katalitik yang sama
 Contoh Isozim : laktat dehidrogenase (mengubah asam keto piruvat menjadi asam laktat)
• Proporsinya berubah secara bermakna dalam keadaan patologik
• Berbeda pada struktur kuartener
• Molekul oligomer terdiri dari 4 protomer dari 2 jenis, H dan M
• Molekul tetrametrik memiliki aktivitas katalitik
• Kemungkinan bentuk/urutan isomer :
HHHH ——- I1
HHHM ——- I2
HHMM ——- I3
HMMM —— I4
MMMM —— I5
ENZIM DALAM DIAGNOSIS KLINIK
* Enzim plasma fungsional :
Ex : lipoprotein lipase, pseudokolin esterase pro Enzim pembekuan dan pemecahan darah
Umumnya disintesis dalam hati; konsentrasi darah, sama atau sudah lebih tinggi dari jaringan
* Enzim plasma non fungsional :
– tidak melakukan fungsi fisioliogik yang dikenal
- substratnya sering tidak terdapat dalam plasma
- kadarnya jauh lebih rendah dari jaringan sehingga dapat membantu diagnostik dan prognostik klinik yang berharga
- berasal dari destruksi eritrosit, leukosit dan sel-sel lain
Penentuan aktivitas Enzim untuk bukti diagnostik :
1. Lipase :
kadar rendah — penyakit hati, def. Vit. A, DM
kadar tinggi — karsinoma pankreas dan pankreatitis akut
2. Amilase :
rendah – penyakit kati
tinggi – obstruksi usus tinggi, parotitis, diabetes, pankreatitis akut
3. Tripsin :
tinggi – penyakit pankreatitis akut (lebih sensitif)
4. Kolin esterase :
rendah — penyakit hati, malnutrisi, infeksi akut, anemia
tinggi — sindroma nefritik
5. Alkalin fosfatase :
tinggi – rakhitis, hiper paratiroidism, sarkoma osteoblastik, ikterus obstruksi,
karsinoma metastatik
6. Fosfatase asam :
tinggi – karsinoma metastatik prostat
7. Trans aminase :
GOT : Glutamic oxaloacetate trans aminase
GPT : Glutamic piruvic trans aminase
Perkiraan GOT — infark miokard
GPT & GOT tinggi — penyakit hati akut
8. Laktat dehidrogenase (LDH) :
tinggi —- infark miokard (dalam 24 jam)
rendah —- leukimia
9. Isosim LDH :
Pengukuran polo isosim
10. Isositrat dehidrogenase (ICD) :
Untuk diagnosis penyakit hati
11. Kreatin fosfokinase :
Untuk diagnosis gangguan otot rangka dan jantung
12. Seruloplasmin :
tinggi —- sirosis, hepatitis, kehamilan
rendah —- penyakit wilson
Reaksi Enzimatis
Reaksi enzimatis dapat digambarkan sebagai berikut
Reaksi : E + S = ES E + P
E = enzim S = substrat ES = kompleks enzim-substrat P = produk
Mekanisme reaksi enzim-enzim ini dapat digambarkan dengan menggunakan :
1. Model Fischer (model kaku)
2. Model Koschland (model konformasi,model fleksibel)
Model Fischer
Model Koschland
Faktor-faktor yang mempengaruhi kecepatan reaksi enzimatis
1. Suhu
- kecepatan reaksi naik jika suhu naik; energi kinetik naik
- Q10 = koefisien temperatur
Ex : Q10 = 2 artinya kecepatan reaksi naik 2x dengan peningkatan suhu 10oC dan
kecepatan menjadi 1/2 dengan penurunan 10oC (pada kontraksi otot
jantung)
2. pH
- umumnya aktivitas Enzim optimum pada pH : 5.0 – 9.0
Reaksi
Enz- + SH+ —– EnzSH —– P + Enz
Pada pH rendah, Enz kehilangan muatan -
Enz- + H+ —– EnzH
Pada pH tinggi, SH mengionisasi
SH+ ——- S + H+
3. Substrat
E
S ——– P
Ditinjau kerja enzim pada substrat tunggal. Kadar substrat dinaikkan, kecepatan reaksi enzim meningkat bila kadar substrat terus dinaikkan, pada kadar substrat tertentu dicapai kecepatan reaksi enzim yang maksimal (Vmaks). Setelah Vmaks dicapai, penambahan substrat tidak lagi meningkatkan kecepatan reaksi enzim.
Km : konstante michaelis
- Adalah konsentrasi substrat yang mempunyai kecepatan reaksi 1/2 dari V maks
- rumus persamaan Michaelis. Menten
Vmaks (S)
V1 = —————
Km + (S)
A. Jika [S] sangat kecil dibanding Km (titik A). penambahan (S) ke Km pada bagian penyebut sangat sedikit berubah, karena Vmaks dan Km konstan, dapat ditulis dengan K
Vmaks (S) Vmaks(S)
V1 = ————— = ————— = K(S)
Km+(S) Km
Sehingga jika (S) sangat kecil untuk menghasilkan Km, kecepatan V1 tergantung
pada (S)
B. Jika [S] jauh lebih besar dari Km. Penambahan Km ke (S) pada penyebut, sangat sedikit berubah. Km dapat dihilangkan.
Vmaks (S) Vmaks(S)
V1 = ————– = ————— = Vmaks
Km+(S) (S)
Jadi kecepatan = Vmaks = maksimal
C. Jika (S) = Km
Vmaks(S) Vmaks(S) Vmaks(S) Vmaks
V1 = ———— = ————- = ———— = ————
Km+(S) (S) + (S) 2(S) 2
Jadi V1 = ½ Vmaks
Penentuan Km dan Vmaks menggunakan bentuk linier dengan persamaan Michaelis-Menten
Vmaks (S)
V1 = ————-
Km + (S)
Dibalik
1 Km + (S)
—– = —————
V1 Vmaks (S)
1 Km 1 (S)
—- = ——— . ——- + ————-
Vi Vmaks (S) Vmaks (S)
1 Km 1 1
—- = ——— . ——- + ———-
Vi Vmaks (S) Vmaks
Persamaan garis lurus
1 Km 1
Y = —— ; a = ———- ; b = ———
Vi Vmaks Vmaks
Km dapat ditentukan dengan :
1. plot line weaver – Burk (grafik )
2. cara Eadie dan Hofster
Vi 1 Vmaks
—- = – Vi . —— + ———
(S) Km Km
Vi Vmaks
Y = ——- , titik potong pada Y = ——–
(S) Km
X = Vi , titik potong pada X = Vmaks
Kemiringan = – 1/Km
4. Inhibitor
Berdasarkan daya kerjanya, maka dibedakan 2 macam inhibitor
a. inhibitor kompetitif
b. inhibitor non kompetitif
a. inhibitor kompetitif atau analog substrat
- mempunyai bentuk molekul yang mirip substrat
- misal : malonat(I) dgn suksinat (S) thd suksinat dehidrogenase
suksinat dpt dihidrolisis menjadi fumarat, malonat tdk dapat.
- terjadi pada daerah katalitik; struktur mirip dengan substrat
- sifat : reversibel
- kerja inhibitor
EnzI (inactive) —— Enz + PEnz
Enz
EnzS (active) —— Enz + P
 inhibitor non kompetitif reversibel
- tidak ada persaingan antara S dan I
- menurunkan Vmaks, tetapi tidak mempengaruhi Km
- terbentuk komplek EnzS dan EnzIS
- sifat : irreversibel
EnzI
Enz EnzIS —– Enz + P
EnS
Enz + P
Inhibitor irreversibel
- Racun Enzim seperti : yodoasetamid
Ion logam berat (Ag+, Hg+)
Oxidant dsb
Dapat mengurangi aktivitas Enzim
– tidak terdapat persamaan struktur dengan S, sehingga peningkatan (S) , umumnya
tidak menghilangkan penghambatan ini
Pro enzymes atau zymogen
 enzym yang belum aktif (prekursor Enzim)
 ex : pro kimo tripsin (245-aminoase residu poli peptida)
 pengaktifan pro kimo tripsin menjadi -kimo tripsin melibatkan 3 tempat proteolitik dan pembentukan senyawa antara aktif yaitu -kimo tripsin
Peran ion logam
Ion logan berperan penting pada struktur dan katalisis protein.
Lebih dari 25 % seluruh Enzim mengikat kuat atau membutuhkan ion logam untuk aktifitasnya.
a. MetalloEnzim dan “Enzim diaktifkan logam”
MetalloEnzim adalah Enzim yang mgd sejumlah ion logam ttt, yang dipertahankan selama proses pemurnian.
“Enzim diaktifkan logam” yi, ENZIM yang tidak mengikat logam dg kuat.
b.Kompleks ternary Enzim-logam-substrat
Terdapat 4 bentuk mineral dalam struktur molekul enzim-substrat:
Enz-S-M M-Enz- S
Jembatan substrat kompleks jembatan-Enzim
M
Enz-M-S S
Enz
Kompleks jembatan kompleks jembatan
logam sederhana logam siklik
Keempat bentuk mungkin untuk Enzim diaktifkan logam. Metalo Enzim tidak mampu membentuk En-S-M
Kompleks jembatan-Enzim (M-Enz-S) :
 logam turut berperan mempertahankan konformasi aktif atau membentuk jembatan logam dengan substrat
PENGATURAN AKTIVITAS ENZIM
Pengaturan aktivitas enzim dilakukan melalui beberapa cara
1. Pembentukan proenzim
2. Pengaturan allosterik
3. Inhibisi umpan balik
4. Modifikasi kovalen
TURN OVER ENZIM (pergantian enzim)
Merupakan pergantian yang lama dengan yang baru, jadi berhubungan dengan sintesis dan degradasi enzim. .Jadi enzim dalam keadaan yang dinamis, berarti yang lama akan selalu diganti yang baru.
 degradasi Enzim melibatkan proses proteolitik yang dikatalisis oleh Enzim lain
 kemampuan Enzim untuk degradasi proteolitik tergantung pada konformasi. Konformasi dipengaruhi oleh : substrat, koEnzim dan ion logam
Sintesis Enzim ditekan oleh :
 Produk akhir : molekul kecil seperti purin or asam amino
Misal : adanya histidin dalam medium Salmonella typhimurium menekan sintesis
semua Enzim yang mengikat biosintesis histidin.
Sebaliknya bila histidin dihilangkan sintesis Enzim normal
 Katabolit : senyawa antara dalam rangkaian reaksi yang diikat Enzim katabolik
perubahan pro Enzim menjadi Enzim :
oleh Enzim proteolitik atau ion H+
Mengapa Enzim tertentu di sekresi dalam bentuk tidak aktif ?
• diperlukan tidak setiap waktu (intermitent)
ex : Enzim untuk pembentukan dan pemecahan bekuan darah
pada proses pencernaan : waktu-waktu tertentu dan teratur dapat diprediksi
• melindungi jaringan asal (tempat penyimpanannya) dari autodigesti

kabrbohidrat


Karbohidrat ('hidrat dari karbon', hidrat arang) atau sakarida (dari bahasa Yunani σάκχαρον, sákcharon, berarti "gula") adalah segolongan besar senyawa organik yang paling melimpah di bumi. Karbohidrat memiliki berbagai fungsi dalam tubuh makhluk hidup, terutama sebagai bahan bakar (misalnya glukosa), cadangan makanan (misalnya pati pada tumbuhan dan glikogen pada hewan), dan materi pembangun (misalnya selulosa pada tumbuhan, kitin pada hewan dan jamur).[1] Pada proses fotosintesis, tetumbuhan hijau mengubah karbon dioksida menjadi karbohidrat.
Secara biokimia, karbohidrat adalah polihidroksil-aldehida atau polihidroksil-keton, atau senyawa yang menghasilkan senyawa-senyawa ini bila dihidrolisis.[2] Karbohidrat mengandung gugus fungsi karbonil (sebagai aldehida atau keton) dan banyak gugus hidroksil. Pada awalnya, istilah karbohidrat digunakan untuk golongan senyawa yang mempunyai rumus (CH2O)n, yaitu senyawa-senyawa yang n atom karbonnya tampak terhidrasi oleh n molekul air.[3] Namun demikian, terdapat pula karbohidrat yang tidak memiliki rumus demikian dan ada pula yang mengandung nitrogen, fosforus, atau sulfur.[2]
Bentuk molekul karbohidrat paling sederhana terdiri dari satu molekul gula sederhana yang disebut monosakarida, misalnya glukosa, galaktosa, dan fruktosa. Banyak karbohidrat merupakan polimer yang tersusun dari molekul gula yang terangkai menjadi rantai yang panjang serta dapat pula bercabang-cabang, disebut polisakarida, misalnya pati, kitin, dan selulosa. Selain monosakarida dan polisakarida, terdapat pula disakarida (rangkaian dua monosakarida) dan oligosakarida (rangkaian beberapa monosakarida).
Karbohidrat merupakan komponen pangan yang menjadi sumber energi utama dan sumber serat makanan. Komponen ini disusun oleh 3 unsur utama, yaitu karbon (C), hidrogen (H) dan oksigen (O). Jenis-jenis karbohidrat sangat beragam dan mereka dibedakan satu dengan yang lain berdasarkan susunan atom-atomnya, panjang/pendeknya rantai serta jenis ikatan akan membedakan karbohidrat yang satu dengan lain. Dari kompleksitas strukturnya dikenal kelompok karbohidrat sederhana (seperti monosakarida dan disakarida) dan karbohidrat dengan struktur yang kompleks atau polisakarida (seperti pati, glikogen, selulosa dan hemiselulosa). Di samping itu, terdapat oligosakarida (stakiosa, rafinosa, fruktooligosakarida, galaktooligosakarida) dan dekstrin yang memiliki rantai monosakarida yang lebih pendek dari polisakarida. Berdasarkan nilai gizi dan kemampuan saluran pencernaan manusia untuk mencernanya, karbohidrat dapat dikelompokkan menjadi karbohidrat yang dapat dicerna dan karbohidrat yang tidak dapat dicerna. Karbohidrat dari kelompok yang dapat dicerna, bisa dipecah oleh enzim a-amilase untuk menghasilkan energi. Monokasarida, disakarida, dekstrin dan pati adalah kelompok karbohidrat yang dapat dicerna. Karbohidrat yang tidak dapat dicerna (juga dikelompokkan sebagai serat makanan/dietary fiber) tidak bisa dipecah oleh enzim a-amilase. Contohnya adalah selulosa, hemiselulosa, lignin dan substansi pektat. Disamping sebagai sumber pemanis, fungsi penting karbohidrat dalam proses pengolahan pangan adalah sebagai bahan pengisi, pengental, penstabil emulsi, pengikat air, pembentuk flavor dan aroma, pembentuk tekstur dan berperan dalam reaksi pencoklatan. Komponen ini juga digunakan sebagai bahan baku proses fermentasi.

biokimia protein

Sebagian besar ilmu kimia organisme hidup menyangkut 5 golongan senyawa utama, yaitu: karbohidrat, lipida, mineral, asam nukleat dan protein. Protein menentukan kebanyakan sifat-sifat yang ditemukan dalam kehidupan. Protein menentukan metabolisme, membentuk jaringan dan membertikan kemungkinan bagai kita untuk bergerak. Protein juga berfungsi mengangkut senyawa-senyawa dan melindungi kita dari penyebaran mikroorganisme yang merugikan.

Bahkan sifat-sifat yang diturunkan oleh suatu organisme untuk membentuk bermacam-macam jenis protein dengan kecepatan yang berbeda (Gilvery, 1996). Selain itu proses kimia dalam tubuh dapat berlangsung dengan baik karena adanya enzim, suatu protein yang berfungsi sebagai biokatalis. Di samping itu hemoglobin dalam butir darah merah (eritrosit) yang berfungsi mengangkut oksigen dari paru-paru ke seluruh jaringan tubuh adalah salah satu jenis protein (Riawan, 1990).

Tumbuhan membentuk protein dari CO2, H2O dan senyawa nitrogen. Hewan yang memakan tumbuhan mengubah protein nabati menjadi protein hewani. Di samping digunakan untuk pembentukan sel-sel tubuh, protein juga dapat digunakan sebagai sumber energi bila tubuh kita kekurangan karbohidrat dan lemak. Komposisi rata-rata unsur kimia yang terdapat dalam protein ialah sebagai berikut: karbon 50%, hydrogen 7%, oksigen 23%, nitrogen 16%, belerang 0-3% dan fosfor 0-3%. Dengan berpedoman pada kadar nitrogen sebesar 16%, dapat dilakukan penentuan kandungan protein dalam suatu bahan makanan .

Protein memiliki molekul besar dengan berat molekul bervariasi antara 5000 hingga jutaan. Dengan cara hidrolisis oleh asam atau oleh enzim, protein akan menghasilkan asam-asam amino. Ada 20 jenis asam amino yang terdapat dalam molekul protein. Asam-asam amino ini terikat satu dengan lain oleh ikatan peptide. Protein mudh dipengaruhi oleh suhu tinggi, pH, dan pelarut organik (Riawan, 1990)

Asam amino adalah senyawa yang mempunyai gugus karbkosil (-COOH) dan gugus amino (-NH2). Rumus umum untuk asam amino adalah:
NH2
H-C-COOH
R

Dari rumus umum tersebut dapat dilihat bahwa atom karbon alfa adalah atom karbon asimetrik, kecuali bila R adalah atom H. Oleh karena itu asam amino memiliki sifat memutar bidang cahaya terpolarisasi atau aktivitas optik. Oleh karena aton karbon asimetrik, maka molekul asam amino mempunyai dua konfigurasi D dan L. Molekul asam amino dikatakan mempunyai konfigurasi L apabila gugus –NH2 terdapat di sebelah kiri atom karbon alfa. Bila posisi gugus –NH2 di sebelah kanan, molekul asam amino itu memiliki konfigurasi D.

Hal ini seperti konfigurasi D-gliseraldehida yang memiliki gugus –OH di sebelah kanan atom karbon asimetrik. Asam-asam amino yang terdapat pada protein umumnya mempunyai konfigurasi L. Asam amino yang mempunyai konfigurasi D dapat diperoleh dari organisme mikro, misalnya D-asam glutamate dari Bacillus anthracis, D-alanin terdapat pula dalam dinding sel bakteri. D-asam amino dapat pula diperoleh sebagai hasil hidrolisis antibiotic gramisidin atau basitrasin. Konfigurasi asam amino tidak ada hubungannya dengan arah putaran cahaya terpolarisasi (Riawan, 1990).

Sifat-sifat Asam Amino

Seperti yang sudah diutarakan di atas, asam-asam alfa amino bersifat optis aktif kecuali glisin (asam amino asetat). Pada umumnya mereka larut dalam air dan tidak larut dalam pelarut organic non-polar seperti eter, aseton dan chloroform. Sifat asam amino ini berbeda dengan asam karboksilat maupun dengan sifat amina. Asam karboksilat alifatik maupun aromatic yang terdiri atas beberapa atom karbon umumnya kurang larut dalam air tetapi larut dalam pelarut organik. Demikian pula amina pada umumnya tidak larut dalam air, tetapi larut dalam pelarut organik (Riawan, 1990).

Apabila asam amino larut dalam air, gugus karboksilat akan melepaskan ion H+, sedangkan gugus amina akan menerima ion H+ sebagaimana yang dituliskan di bawah ini
-COOH -COO- + H+
-NH2 + H+ -NH3

Oleh adanya kedua gugus tersebut, asam amino dalam larutan dapat membentuk ion yang bermuatan positif dan juga negatif (zwitterions) atau ion amfoter (Riawan, 1990). Bila kadar ion hydrogen meningkat, senyawa tersebut akan bersifat basa karena gugusan karboksilat akan mengikat ion H+ sehingga terbentuklah gugusan COOH yang tidak bermuatan.

Gugusan ammonium akan menyebabkan ion tersebut bermuatan positif (bentuk kation). Sebaliknya zwitterions akan bersifat asam karena gugus ammonium akan melepas ion H+ bila kadar ion H+ menurun, sehingga terbentuklah gugusan ammonium yang tidak bermuatan. Akibatnya molekul tersebut menjadi bermuatan negatif (bentuk anion) (Gilvery, 1996).

Dalam suatu sistem elektroforesis yang mempunyai elektroda positif dan negatif, asam amino akan bergerak menuju elektroda yang berlawanan dengan muatan ion asam amino yang terdapat dalam larutan.

Oleh karena muatan itu tergantung pada pH larutan, maka pH larutan dapat diatur sedimikian rupa sehingga ion asam amino tidak bergerak ke arah elektroda positif maupun elektroda negatif dalam sistem elektroforesis. pH yang demikian itu disebut titik isolistrik (Riawan, 1990).

Sebagian dari molekul-molekul mungkin mempunyai muatan negatif, tetapi segera diimbangi oleh molekul-molekul lain dengan muatan positif yang sama banyak: jumlah molekul zwitterions pada titik isolistrik adalah yang paling banyak (Gilvery, 1996).

Pada pH di atas titik isolistrik protein bermuatan negatif, sedangkan di bawah titik isolistrik protein bermuatan positif. Oleh karena itu untuk mengendapkan protein dengan ion logam diperlukan pH larutan di atas titik isolistrik, sedangkan pengendapan dengan ion negatif memerlukan pH di bawah titik isolistrik. Ion-ion positif yang mengendapkan protein antara lain Ag+, Ca++, Zn++, Hg++, Fe++, Cu++ dan Pb++.

Sedangkan ion-ion negatif yang dapat mengendapkan protein ialah ion salisilat, trikloroasetat, pikrat, tanat dan sulfosalisilat. Berdasarkan sifat tersebut putih telur atau susu dapat digunakan sedagat antidote atau penawar racun apabila seseorang keracunan logam berat (Riawan, 1990).

Ditinjau dari strukturnya, protein dapat dibagi dalam dua golongan besar, yaitu golongan protein sederhana dan protein gabungan. Protein sederhana adalah protein yang hanya terdiri atas molekul asam-asam amino, sedangkan protein gabungan adalah protein yang terdiri atas protein dan gugus bukan protein. Gugus ini disebut gugus prostetik dan terdiri atas karbohidrat, lipid atau asam nukleat (Riawan, 1990).

Protein sederhana dapat dibagi dalam dua bagian menurut bentuk molekulnya, yaitu protein fiber dan protein globular. Protein fiber mempunyai bentuk molekul panjang seperti serat atau serabut, sedangkan protein globular berbentuk bulat (Riawan, 1990).

Molekul protein fiber terdiri atas beberapa rantai polipeptida yang memanjang dan dihubungkan satu sama lain oleh beberapa ikatan silang sehingga merupakan bentuk serat atau serabut yang stabil. Sifat umum protein fiber ialah tidak larut dalam air dan sukar diuraikan dengan enzim (Riawan, 1990).

Kolagen adalah suatu jenis protein yang terdapat pada jaringan ikat. Protein ini mempunyai struktur heliks tripel. Kolagen tidak larut dalam air dan tidak diuraikan dengan enzim. Namun kolagen dapat diubah oleh pemanasan dalam air mendidih oleh larutan asam atau basa encer menjadi gelatin yang mudah larut dan mudah dicernakann. Hampir 30% protein tubuh adalah kolagen (Riawan, 1990).

Keratin adalah protein yang terdapat dalam bulu domba, sutera alam, rambut, kulit, kuku. Apabila dipanaskan dengan air mendidih dan diregangkan maka konformasi berubah menjadi lembaran berlipat parallel, karena ikatan hydrogen yang menunjang struktur terputus (Riawan, 1990).

Protein globular umumnya berbentuk bulat atau elips dan terdiri atas rantai polipeptida yang berlipat. Pada umumnya gugus R polar terletak di sebelah luar rantai peptida, sedangkan gugus R yang hidrofob terletak di sebelah dalam molekul protein. Protein globular pada umumnya mempunyai sifat dapat larut dalam air, dalam larutan asm dan basa dan etanol. Beberapa jenis protein globular adalah albumin, globulin, histon dan protemin (Riawan, 1990).

Albumin adalah protein yang dapat larut dalam air serta dapat terkoagulasi oleh panas. Larutan albumin dalam air dapat diendapkan dengan penambahan amonium sulfat hingga jenuh. Albumin antara lain terdapat pada serum darah dan bagian putih telur (Riawan, 1990).

Globulin mempunyai sifat sukar larut dalam air murni, tetapi dapat larut dalam larutan garam netral, misalnya larutan NaCl encer. Larutan globulin dapat diendapkan oleh penambahan garam amonium sulfat hingga setengah jenuh. Globulin dapat diperoleh dengan jalan mengekstrasikannya dengan larutan garam (5-10%) NaCl, kemudian ekstrak yang diperoleh diencerkan dengan penambahan air. Seperti albumin, globulin juga dapat terkoagulasi oleh panas. Globulin antara lain tertdapat dalam serum darah, pada otot dan jaringan lain (Riawan, 1990).

Protein gabungan adalah protein yang berikatan dengan senyawa yang bukan protein. Gugus bukan protein ini disebut gugus prostetik. Ada beberapa jenis gabungan antara lain mukoprotein, glikoprotein, lipoprotein dan nucleoprotein (Riawan, 1990).

Reaksi warna untuk asam amino spesifik

Perkembangan biokimia


Kebangkitan biokimia diawali dengan penemuan pertama molekul enzim, diastase, pada tahun 1833 oleh Anselme Payen. Tahun 1828, Friedrich Wöhler menerbitkan sebuah buku tentang sintesis urea, yang membuktikan bahwa senyawa organik dapat dibuat secara mandiri. Penemuan ini bertolak belakang dengan pemahaman umum pada waktu itu yang meyakini bahwa senyawa organik hanya bisa dibuat oleh organisme. Istilah biokimia pertama kali dikemukakan pada tahun 1903 oleh Karl Neuber, seorang kimiawan Jerman. Sejak saat itu, biokimia semakin berkembang, terutama sejak pertengahan abad ke-20, dengan ditemukannya teknik-teknik baru seperti kromatografi, difraksi sinar X, elektroforesis, RMI (nuclear magnetic resonance, NMR), pelabelan radioisotop, mikroskop elektron, dan simulasi dinamika molekular. Teknik-teknik ini memungkinkan penemuan dan analisis yang lebih mendalam berbagai molekul dan jalur metabolik sel, seperti glikolisis dan siklus Krebs. Perkembangan ilmu baru seperti bioinformatika juga banyak membantu dalam peramalan dan pemodelan struktur molekul raksasa.
Saat ini, penemuan-penemuan biokimia digunakan di berbagai bidang, mulai dari genetika hingga biologi molekular dan dari pertanian hingga kedokteran. Penerapan biokimia yang pertama kali barangkali adalah dalam pembuatan roti menggunakan khamir, sekitar 5000 tahun yang lalu.

ilmu gizi


I. JENIS-JENIS ZAT GIZI

Zat gizi dapat digolongkan menjadi enam golongan yaitu Karbohidrat, Protein, Lemak, Vitamin, Mineral dan Air. Serat merupakan zat non gizi tapi sangat bermanfaat bagi tubuh

II. FUNGSI ZAT-ZAT GIZI

Makanan yang dikonsumsi pertama-tama berfungsi sebagai sumber energi. Zat makanan yang dapat digunakan untuk energi adalah karbohidrat, lemak dan protein. Energi yang terkandung dalam zat gizi dapat diukur menggunakan alat Bomb Calorimeter disebut energi pembakaran. Karbohidrat dapat dihidrolisis menjadi glukosa yang merupakan energi utama bagi tubuh. Protein dan lemak juga dapat memproduksi glukosa melalui proses glukoneogenesis.

Protein mempunyai fungsi utama sebagai pertumbuhan dan pemeliharaan jaringan, pembentukan senyawa esensial, regulasi keseimbangan air, mempertahankan netralitas tubuh, pembentukan antibodi dan transport zat gizi. Bila kekurangan karbohidarat dan lemak dapat juga sebagai sumber energi. Lemak berperan sebagai sumber energi, memberikan rasa kenyang yang lebih lama, sebagai pembawa vitamin A,D,E,K dan dalam bahan makanan lemak akan meningkatkan rasa enak dan juga menstimulir mengalirnya cairan pencernaan.

Vitamin B dan C merupakan vitamin larut dalam air, vitamin B1 (vitamin semangat) berperan dalam metabolisme karbohidrat untuk pembentukan energi (sebagai koenzim), kekurangan vitamin B1 akan menyebabkan penyakit beri-beri, kurang nafsu makan, cepat merasa lelah, kerusakan pembuluh darah dan sel saraf. Vitamin B2 berperan dalam metabolisme karbohidrat, asam amino dan asam lemak. Kekurangan vitamin B2 dapat menimbulkan rasa lelah, ketidakmampuan untuk bekerja dan perubahan bibir pada dan perubahan bibir pada bagian yang kulitnya keras. Kekurangan vitamin B2 yang berlanjut dapat menurunkan ketajaman penglihatan dan mata lebih cepat merasa lelah. Kekurangan vitamin B12 dan asam folat dapat menyebabkan timbulnya anemia (kekurangan darah), kerena kedua macam vitamin tersebut tersangkut dalam proses sintesis sel-sel darah merah. Sebagaian anemia gizi pada wanita hamil disebabkan kerena kekurangan asam folat.

Vitamin C berperan dalam pembentukan substansi antarsel berbagai macam jaringan, serta meningkatkan daya tahan tubuh, meningkatkan aktifitas “pagositas” sel-sel darah putih, dan meningkatkan penyerapan zat besi dalam usus kecil serta transportasi zat besi dari darah (transferring)kedalam sumsum tulang (ferritin),hati dan limpa.

Vitamin A berguna untuk pertumbuhan, proses penglihatan, reproduksi dan pemeliharaan sel-sel epitel. Selain vitamin A dari bahan pangan hewani, tubuh dapat juga menggunakan provitamin A (karoten) dari bahan pangan nabati yang terlebih dahulu akan diubah dalam tubuh menjadi vitamin A. Karoten yang berasal dari sayuran dan buah-buahan diperkirakan sepertiganya dapat diserap oleh usus,dan setengah dari jumlah yang diserap tersebut dapat dikonvrsikan di dalam tubuh menjadi vitamin A.

Vitamin D berperan dalam penyerapan dan metabolisme kalsium (Ca) dan fosfor (P), serta dalam pembentukan tulang dan gigi. Tubuh manusia mampu membuat vitamin D dari 7- dehidrokolesterol yang terdapat pada kulit dengan bantuan matahari (sinar ultraviolet). Kekurangan vitamin D dapat berakibat terganggunya proses pembentukan tulang dan penyakit yang ditimbulkannya dikenal dengan sebutan rakhitis.

Vitamin E berperan sebagai antioksida untuk berbagai senyawa yang larut dalam lamak, misalnya vitamin A dan asam lemak tidak jenuh.

Kerusakan saluran darah dan perubahan permeabilitas saluran kapilere pada kasus kekurangan vitamin E, mungkin berhubungan dengan peranannya sebagai antioksidan .Pada hewan betina,defisiensi vitamin E dapat menyebabkan terjadinya keguguran. Kenyataan ini telah diinterprestasikan secara salah, bahwa vitamin E berkasiat untuk menyuburkan atau kekurangan vitamin E dapat menyebabkan terjadinya sterilitas.
Vitamin K berperan dalam sistem pembekuan darah, oleh kerena itu kekurangan vitamin K dapat menyebabkan darah sulit untuk menggumpal. Sebagaian dari vitamin K yang diperlukan tubuh, dihasilkan oleh mikroflora (bakteri) yang terdapat dalam usus.


5. Mineral

Kalsium tidak hanya berperan pada pembentukan tulang dan gigi,tetapi juga mempunyai fungsi penting pada berbagai proses fisiologis dan biokimia didalam tubuh, seperti pada pembentukan darah, membantu regulasi aktifitas otot-otot kerangka,jantung dan jaringan-jaringan lain, trasmisi impul-impul syaraf,memelihara dan meningkatkan fungsi membrane sel, mengaktifkan reaksi enzim dan sekresi hormon, kekurangan atau ketidaksempurnaan metabolisme kalsium dapat menyebabkan penyakit osteoporosis ,osteomalacea,ricketsia atau rachitis. Pengeluaran (ekskresi) kalsium dalam urin dipengaruhi oleh tingkat konsumsi protein, yaitu makin banyak protein yang dikonsumsi makin banyak kalsium yang dikeluarkan melalui urin. Selain sebagai komponen pembentukan tulang bersama-sama dengan kalsium,fospor terdapat pada hampir semua elemen penting seperti DNA (deoxyribo nucleicacid), RNA (ribo nucleic acid) yang merupakan senyawa utama dalam sel sebagai penentu genetika. Oksidasi karbohidrat dalam membentuk ATP juga memerlukan fosfor, demikian juga dengan fosfolipid yang merupakan komponen membran sel pembentukan fosfor.

Magnesium berperan dalam berbagai reaksi enzimiatis, antara lain enzim – enzim yang berkaitan dengan metabolisme glukosa secara anaerobic, siklus krebs, oksidasi asam lemak, hidrolis pirofosfat dan aktivasi asam lemak ( reaksi antara asam lemak dengan koenzim A ) Kekurangan magnesium pada hewan percobaan menyebabkan perubahan pada syaraf otot, pertumbuhan terhambat dan klasifikasi ginjal ( menumpuknya kalsium pada ginjal )

Mineral natrium, kalium dan khlor terdapat hampir diseluruh cairan dan jaringan lunak tubuh. Mineral natrium dan khlor terdapat cairan diluar sel, sedangkan kalium merupakan elektrolit utama cairan didalam sel. Mineral – mineral ini sangat penting dalam mengatur tekanan osmotic, keseimbangan asam basa dan memegang peranan penting dalam metabolisme air.

Percobaan pada tikus memperlihatkan bahwa defesiensi mineral natrium mempunyai pengaruh negative terhadap nafsu makan, peningkatan berat badan, penyimpanan energi dan sentesis lemak ataupun protein konsumsi NaCl yang berlebihan dapat membahayakan kesehatan tubuh karena akan meningkatkan tekanan darah . Konsumsi garam yang berlebihan menyebabkan meningkatnya retensi air didalam tubuh yang dapat menyebabkan terjadinya edema. Pada manusia defisiensi kalium dapat menyebabakan kelemahan dan parlisis otot.

Zat besi merupakan komponen hemoglobin yang berfungsi mengangkut oksigen didarah ke sel - sel yang membutuhkannya untuk metabolisme glucose, lemak dan protein menjadi energi ( ATP ). Besi juga merupakan bagian mioglobin yaitu molekul yang mirip hemoglobin yang terdapat disel - sel otot, yang juga berfungsi mengangkut oksigen. Mioglobin yang berkaitan dengan oksigen inilah yang membuat daging menjadi berwarna merah. Disamping sebagai komponen hemoglobin dan mioglobin, besi juga merupakan komponen dari enzim oksidasi xanthine oksidase, suksinat dehidrogenase, katalase dan peroksidasi.

Kekurangan zat besi menyebabkan kadar hemoglobin didalam darah lebih rendah dari normalnya, keadaan ini disebut anemia, 99 % dari anemi disebabkan oleh kekurangan zat besi selain itu juga menurunkan kekebalan tubuh sehingga sangat peke terhadap serangan bibit penyakit.

Cu merupakan bagian dari beberapa enzim, yaitu cytochrom oxsidase, monoamine oxidase, tyrosinase dan superoxide dismutase. Cu juga terlibat dalam metabolisme energi perkembangan tulang, perkembangan jaringan konektif, perkembangan system saraf pusat dan pembentukan tulang, perkembangan jaringan konektif, perkembangan system saraf pusat dan pembentukan darah. Pda manusia defisiensi Cu jarang terjadi.

Seng ( Zn ) merupakan bagian dari sekitar 100 metalloenzim, katalis dalam memulai aksi enzim. Seng juga terlibat dalam sintesis protein dan asam nuleat.

Gejala kekurangan seng ditandai dengan menurunnya pertumbuhan dan perkembangan organ seksual ( hypogonadism), tidak berkembangnya indera perasa ( hypoglusia) dan indera penciuman ( hyposmia ) penyembuhan luka yang lambat anorexia dan anemia besi.

Fungsi fisiologis selenium berhubungan dengan fungsi vitamin E, memelihara struktur dan fungsi otot, antioksidan, antikarsinogen, dan juga merupakan bagian dari beberapa enzim.

Mangan ( Mn ) merupakan antifator beberapa system enzim yang terlibat dalam metabolisme protein, metabolisme energi dan pembentukan mukopolisakarida.

Iodium merupakan mineral yang diperlukan tubuh dalam jumlah yang sangat relative sedikit, tetapi mempunyai peranan yang sangat penting yaitu untuk pembentukan hormone tiroid ( tiroksin dan trio dotironin ). Hormon ini sangat penting untuk pertumbuhan normal, kekurangan iodium dimanifestasikan dengan membesarnya kelenjar gondok. Defesiensi yang berlanjut dapat menyebabkan kekerdilan dan keterbelakangan mental.


6. Air

Air merupakan suatu zat gizi yang sangat penting, namun peranannya berbeda dengan peranan zat - zat gizi yang lain. Air tidak dicerna terlebih dahulu sebelum diabsorpsidari usus halus. Air tidak mensuplai energi untuk pertumbuhan untuk pemeliharaan atau untuk kerja fisik tubuh, tetapi sebagai zat yang mempunyai sifat - sifat kimia dan fisika yang unik, maka air merupakan suatu media untuk terjadinya reaksi - reaksi kimia dalam tubuh. Selain itu juga berperan dalam reaksi - reaksi biologis dan memegang peranan penting dalam mengatur temperature tubuh, merupakan alat transportasi sebagai komponen utama darah, air akan mengangkut berbagai nutrient kejaringan - jaringan dan membawa senyawa - senyawa metabolic beracun ke ginjal untuk dibuang keluar tubuh. Air berfungsi sebagai pelumas komponen utama air mata, saliva dan mukus.